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The Problem

● Blocks are transmitted in their entirety.
– In parallel to all peers.

– 1MB blocks, 8 peers, 1Mbit → 66.8 – 76.4 seconds

● Miners can solve this easily by all centralizing!  



  

The Opportunity

● Under normal circumstances, most peers 
already know many of the transactions.
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The Opportunity

● Under normal circumstances, most peers 
already know many of the transactions.

● Doesn't help for worst case!
● And we want to avoid adding round trip 

latency...



  

First Attempt

● Gavin Andresen's 'O(1) Block Propagation' gist:
– https://gist.github.com/gavinandresen/e20c3b5a1d

4b97f79ac2

https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2


  

First Attempt

● Gavin Andresen's 'O(1) Block Propagation' gist:
– https://gist.github.com/gavinandresen/e20c3b5a1d

4b97f79ac2

● Miners use Invertable Bloom Lookup Table to 
encode block for transmission

http://whitehairedoldgrouch.tumblr.com/post/833680337/mmmblts CC-BY-2.0

https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
http://whitehairedoldgrouch.tumblr.com/post/833680337/mmmblts


  

IBLT: Background

● Slice transaction into equal fragments:

struct fragment {
    u8 id[6];
    u16 index;
    u8 frag[8];
} key;



  

IBLT: Background

● Use three hash functions to place it into 
buckets:
– Increment counter for the bucket.

– XOR in the fragment

Fragment A

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A A A



  

IBLT: Background

● Repeat for other fragments

Fragment B

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A AB B



  

9 138075035972480352703587235092502395723095782305830528750235872230958232035872305872305823053209578203958

IBLT: Background

● Repeat for other fragments



  

IBLT: Background

● Send to peer
● Peer creates equivalent IBLT
● Calculates difference

9 138075035972480352703587235092502395723095782305830528750235872230958232035872305872305823053209578203958

9 138075035972480352703587235092502395723095782305830528750235872230958232035872305872305823053209578203958

Subtract counters, XOR fragments:
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A AB B



  

IBLT: Background

● Buckets with -1: tx not in block.
→ Eliminate all tx fragments from IBLT.

● Buckets with 1: unknown tx in block
→ Remove, reassemble tx once all frags recovered

● If we end up with empty IBLT, try to form block.



  

Minor Improvements

struct fragment {
    u8 id[6];
    u16 index;
    u8 frag[8];
} key;

● Use siphash not SHA256 for id (v. fast)
● Offset index by hash of id (decode ordering)
● Larger than 8 byte fragments.
● Fewer bits (than 32) for bucket counter.

(Thanks to Kalle Rosenbaum for discussion)



  

Peer-to-peer IBLT

● Creating an IBLT is fast:
– Create frag ids from secret + txid for all txs in 

mempool (+ any other known txs).

– XOR txs into IBLT.

● Let's use this between peers!
– Thanks Pieter Wuille
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IBLT: Scaling

● Scales by differences in mempool
– With some encoding penalty (1-2.2x)

● Implies that it scales with tx bitrate.



  

IBLT: Centralization?

● Pressure on miners to minimize mempool 
differences.
– Implications for censorship.



  

IBLT: Centralization?

● Pressure on miners to minimize mempool 
differences.
– Implications for censorship.

● Tradeoff:
– We need to indicate which mempool txs are likely to 

be in block.

– Need a compact heuristic to represent block txs

– Try not to make “reasonable variations” cost too 
much.
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– Assumes miners are basically profit-maximizing.
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IBLT: Centralization?

● Send “minimum satoshi per byte”.
– Assumes miners are basically profit-maximizing.

● Add “txs which are below that but included”
● Add “txs which are above that but excluded”

– These two can be compactly represented as bit 
prefixes

– O(#txs-in-mempool) bits

– eg. 20 bits for 1M txs in mempool.



  

Rough Results

https://github.com/rustyrussell/bitcoin-corpus 
– 1 week mempool data of 4 nodes on Digital Ocean

● Pretend they are peers

https://github.com/rustyrussell/bitcoin-corpus
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→ Best possible case is 15.4MB instead 482.3MB
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Rough Results

● 128 byte fragment size
→ Best possible case is 15.4MB instead 482.3MB

● Good: Block 352778 (999770 bytes):
– 999599 bytes known, 0 bytes unknown.

– 1273086 bytes in mempool.

– Best possible total tx bytes: 1898, 1898, 4244

● Bad: Block 352737 (99749 bytes)
– 15371 bytes known, 84202 bytes unknown.

– 137660 bytes in mempool.

– Best possible total tx bytes: 112319, 112319, 112319



  

Canonical Block Ordering: by Fee

● IBLT doesn't include tx order.
– Gavin suggested an arbitrary tx order

● Order by fee-per-kbyte:
– Plus commitment to minfee and # txs below & 

above provides some fee determination for SPV



  

Canonical Block Ordering: by Fee

● IBLT doesn't include tx order.
– Gavin suggested an arbitrary tx order

● Order by fee-per-kbyte:
– Plus commitment to minfee and # txs below & 

above provides some fee determination for SPV

● Also helps “weak”-block propagation idea
– Nodes would send blocks which reach 1/20th target

– Net encoding could refer to previous weak blocks.

– Most efficient if can use ranges
● Fee-per-byte most likely to be contiguous.



  

Conclusion: Testing

● Test without miner support:
– Sending accompanying ordering information.

– Guesstimate minfee.

– Use feedback from previous blocks to estimate how 
“in-sync” mempools are for each peer.

– Combine with total unknown txsize for this peer to 
estimate appropriate IBLT size.

– Aim for 95% chance of reconstruction.
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