

Bitcoin Block Propagation with IBLT

Rusty Russell

Code Contributor, Blockstream
rusty@blockstream.com/rusty@rustcorp.com.au

mailto:rusty@blockstream.com
mailto:rusty@rustcorp.com.au

The Problem

● Blocks are transmitted in their entirety.
– In parallel to all peers.

– 1MB blocks, 8 peers, 1Mbit → 66.8 – 76.4 seconds

● Miners can solve this easily by all centralizing!

The Opportunity

● Under normal circumstances, most peers
already know many of the transactions.

The Opportunity

● Under normal circumstances, most peers
already know many of the transactions.

● Doesn't help for worst case!

The Opportunity

● Under normal circumstances, most peers
already know many of the transactions.

● Doesn't help for worst case!
● And we want to avoid adding round trip

latency...

First Attempt

● Gavin Andresen's 'O(1) Block Propagation' gist:
– https://gist.github.com/gavinandresen/e20c3b5a1d

4b97f79ac2

https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2

First Attempt

● Gavin Andresen's 'O(1) Block Propagation' gist:
– https://gist.github.com/gavinandresen/e20c3b5a1d

4b97f79ac2

● Miners use Invertable Bloom Lookup Table to
encode block for transmission

http://whitehairedoldgrouch.tumblr.com/post/833680337/mmmblts CC-BY-2.0

https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
http://whitehairedoldgrouch.tumblr.com/post/833680337/mmmblts

IBLT: Background

● Slice transaction into equal fragments:

struct fragment {
 u8 id[6];
 u16 index;
 u8 frag[8];
} key;

IBLT: Background

● Use three hash functions to place it into
buckets:
– Increment counter for the bucket.

– XOR in the fragment

Fragment A

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

A A A

IBLT: Background

● Repeat for other fragments

Fragment B

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0

A AB B

9 138075035972480352703587235092502395723095782305830528750235872230958232035872305872305823053209578203958

IBLT: Background

● Repeat for other fragments

IBLT: Background

● Send to peer
● Peer creates equivalent IBLT
● Calculates difference

9 138075035972480352703587235092502395723095782305830528750235872230958232035872305872305823053209578203958

9 138075035972480352703587235092502395723095782305830528750235872230958232035872305872305823053209578203958

Subtract counters, XOR fragments:
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0

A AB B

IBLT: Background

● Buckets with -1: tx not in block.
→ Eliminate all tx fragments from IBLT.

● Buckets with 1: unknown tx in block
→ Remove, reassemble tx once all frags recovered

● If we end up with empty IBLT, try to form block.

Minor Improvements

struct fragment {
 u8 id[6];
 u16 index;
 u8 frag[8];
} key;

● Use siphash not SHA256 for id (v. fast)
● Offset index by hash of id (decode ordering)
● Larger than 8 byte fragments.
● Fewer bits (than 32) for bucket counter.

(Thanks to Kalle Rosenbaum for discussion)

Peer-to-peer IBLT

● Creating an IBLT is fast:
– Create frag ids from secret + txid for all txs in

mempool (+ any other known txs).

– XOR txs into IBLT.

● Let's use this between peers!
– Thanks Pieter Wuille

IBLT: Scaling

IBLT: Scaling

● Scales by differences in mempool
– With some encoding penalty (1-2.2x)

● Implies that it scales with tx bitrate.

IBLT: Centralization?

● Pressure on miners to minimize mempool
differences.
– Implications for censorship.

IBLT: Centralization?

● Pressure on miners to minimize mempool
differences.
– Implications for censorship.

● Tradeoff:
– We need to indicate which mempool txs are likely to

be in block.

– Need a compact heuristic to represent block txs

– Try not to make “reasonable variations” cost too
much.

IBLT: Centralization?

● Send “minimum satoshi per byte”.
– Assumes miners are basically profit-maximizing.

IBLT: Centralization?

● Send “minimum satoshi per byte”.
– Assumes miners are basically profit-maximizing.

● Add “txs which are below that but included”
● Add “txs which are above that but excluded”

IBLT: Centralization?

● Send “minimum satoshi per byte”.
– Assumes miners are basically profit-maximizing.

● Add “txs which are below that but included”
● Add “txs which are above that but excluded”

– These two can be compactly represented as bit
prefixes

– O(#txs-in-mempool) bits

– eg. 20 bits for 1M txs in mempool.

Rough Results

https://github.com/rustyrussell/bitcoin-corpus
– 1 week mempool data of 4 nodes on Digital Ocean

● Pretend they are peers

https://github.com/rustyrussell/bitcoin-corpus

Rough Results

● 128 byte fragment size
→ Best possible case is 15.4MB instead 482.3MB

Rough Results

● 128 byte fragment size
→ Best possible case is 15.4MB instead 482.3MB

● Good: Block 352778 (999770 bytes):
– 999599 bytes known, 0 bytes unknown.

– 1273086 bytes in mempool.

– Best possible total tx bytes: 1898, 1898, 4244

Rough Results

● 128 byte fragment size
→ Best possible case is 15.4MB instead 482.3MB

● Good: Block 352778 (999770 bytes):
– 999599 bytes known, 0 bytes unknown.

– 1273086 bytes in mempool.

– Best possible total tx bytes: 1898, 1898, 4244

● Bad: Block 352737 (99749 bytes)
– 15371 bytes known, 84202 bytes unknown.

– 137660 bytes in mempool.

– Best possible total tx bytes: 112319, 112319, 112319

Canonical Block Ordering: by Fee

● IBLT doesn't include tx order.
– Gavin suggested an arbitrary tx order

● Order by fee-per-kbyte:
– Plus commitment to minfee and # txs below &

above provides some fee determination for SPV

Canonical Block Ordering: by Fee

● IBLT doesn't include tx order.
– Gavin suggested an arbitrary tx order

● Order by fee-per-kbyte:
– Plus commitment to minfee and # txs below &

above provides some fee determination for SPV

● Also helps “weak”-block propagation idea
– Nodes would send blocks which reach 1/20th target

– Net encoding could refer to previous weak blocks.

– Most efficient if can use ranges
● Fee-per-byte most likely to be contiguous.

Conclusion: Testing

● Test without miner support:
– Sending accompanying ordering information.

– Guesstimate minfee.

– Use feedback from previous blocks to estimate how
“in-sync” mempools are for each peer.

– Combine with total unknown txsize for this peer to
estimate appropriate IBLT size.

– Aim for 95% chance of reconstruction.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

