
How Wallets Can Handle 
Real Transaction Fees

Thoughts by Bram Cohen



Ground rules

• We're talking about consumer wallets 

• No microchannels, but they should come later 

• Replace by fee in effect 

• Aggressive replace by fee in effect



What should transaction fees 
be?

• Supply and demand 

• But supply is noisy, demand is 
noisy 

• Demand has day/night and 
weekly cycle 

• There should be a patience 
tradeoff - if you're willing to 
wait longer your fees will on 
average be lower.



What should wallet UX be?

• Needs to specify max fee and how long until 
giving up 

• Needs to have state of 'failed send' 

• Currently no max height in transactions! Needs 
protocol extension!



Information which can be 
used

• Past transaction fees 

• Current transactions in mempool 

• Past transaction fees which the local client has 
paid 

• How long the current payment attempt has been 
going on



Problems with possible 
inputs

• Past fees can result in fees getting stuck at a high 
amount, which peers continue based on tradition 

• Past fees Fees can get trivially pumped by any 
miner 

• For mempool SPV clients have to trust on full nodes, 
creating a trivial attack and incentive to do it 

• Most conservative to stick with all locally available 
info



Using just local info
• Pick a starting point which is de minimis for your first 

transaction or 1/2 (or less, configurable) your last fee paid 
if you've sent coin before 

• B = max number of blocks from start before giving up, S = 
starting fee, M = max fee 

• For each new block at height H from the start, post a new 
transaction with fee e^(lg(S) + (lg(M) - lg(S)) * H/B) 

• To avoid artifacts when multiple wallets use the same 
magic numbers, do this before the first block: pick V in [0, 
1], let S = e^(lg(S) + (lg(M) - lg(S)) * (V/(V+B)))



Handling utxo combining
• Matters surprisingly little. Extra size will happen eventually for every 

extra coin in wallet regardless of whether it's merged sooner or later 

• Transactions to combine wallet utxos during times when fees are 
low might be a good idea 

• Extension could help a bit with size: Using Schnorr, allow a single 
signature with multiple inputs 

• A 'better' extension would allow inputs with the same key to share a 
signature, if used properly only pushes up merge reveal a little bit 

• Another extension would allow any public key which has ever been 
revealed in the block chain to date to not have to be revealed 
again. This is a bad idea!


